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netic resonance or positron emission tomog-
raphy and radiotherapy that extends the life 
of thousands of cancer patients every year. 

Physicists either intentionally or not of-
ten find themselves at the frontiers of medi-
cine. In 1928 a neuro-psychiatrist Hans Berg-
er started the series of publications on bioel-
ectrical activity of human brain. His ground-
breaking work was accepted by the medical 
community six years later. It took Alfred 
Lee Loomis, an investment banker turned 
physicist, only three years to extend Berger’s 
work and uncover the structure of human 
sleep in his private lab in Tuxedo Park, New 
York. This colorful individual was also instru-
mental in the development of radar thereby 
contributing to the Allied victory in World 
War II. However, such interdisciplinary re-
search is a reciprocal interaction from which 
physicists also benefit. This paper is our tes-
timony to that benefit.

During the great Depression the Ameri-
can humorist Will Rogers with his character-
istic sarcasm pointed out that: “The money 
was all appropriated for the top in hopes 
that it would trickle down to the needy.” 
Nowadays “Trickle-down economics” in Unit-
ed States politics refers to the idea that tax 
breaks  or other economic benefits provided 
to businesses and upper income levels will 
benefit the less fortunate members of soci-
ety by improving the economy as a whole. 
In a scientific rather than an economic con-
text one observes that many or even most 
physicists are proponents of trickle-down 
physics. They believe that the development 
of medicine and life sciences can be and of-
ten is determined by the adoption of meth-
ods and techniques developed in the physi-
cal sciences. Such an opinion is not entirely 
without merit. It is difficult to envision mod-
ern medicine without sophisticated imaging 
such as computer tomography, nuclear mag-
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WHAT A PHYSICIST CAN LEARN FROM A SOMNOLOGIST?

INTRODUCTION

FRACTAL GEOMETRY AND FRACTAL TIME SERIES

The term fractal was coined by the late 
Benoit Mandelbrot who championed its use 
in all manner of social and natural phenom-
ena (Mandelbrot 1977). Since a picture is 
worth a thousand words in Fig. 1 we illus-

trate the generation of a geometric fractal - 
Koch’s snowflake. It is built by starting with 
an equilateral triangle, removing the inner 
third of each side, building another equilat-
eral triangle of 1/3 the size at the location 
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where F is a normal distribution in the 
scaled variable x/tH. In the time series data 
the scaling behavior of the fractal is seen 
through intermittent bursts of fluctuations 
interspersed between regions of relatively 
quiescent behavior. Upon magnification of 
a rectangular part of the top plot in Fig. 3, 
intermittent bursts between regions of rela-
tively quiescent behavior can again be seen. 
More rigorously, the distribution function 
of the segment of the left trace with the 
horizontal axis magnified by a parameter b 
and the vertical axis by bH according to the 
above equation is the same as that of the 
original trace. This scaling of the statistical 
distribution of the time series defines a frac-
tal time series.

It turns out that the properties of the 
fractal time series defined above are deter-
mined by a single parameter — the Hurst 
exponent H (0<H<1). In particular, the 
standard deviation is proportional to tH 
where t is the length of series. Said differ-
ently, the standard deviation increases as a 
power-law in time and the statistical distri-

where the side was removed. This process 
is repeated indefinitely each time with the 
same contraction of scale size.

What geometric fractals have in common 
is the repeating pattern at every scale. If the 
replication is exactly the same at every scale 
(as in Fig. 1), it is called a self-similar pat-
tern.

Let us look at the self-similar pattern 
from the different perspective by examining 
a different geometric fractal. In the left col-
umn of Fig. 2 we present a branching tree 
in which the outermost “tip” of the branch 
is magnified to reveal the same branch-
ing structure at the next smaller scale. It 
is worth pointing out that such branching 
may be found in the architecture of the hu-
man lung and vascular system (West 2013). 
A mathematical fractal has no characteristic 
scale size and its defining pattern proceeds 
to ever smaller and ever larger scales. On the 
other hand, a natural fractal always termi-
nates at some smallest and largest scale and 
whether or not this is a useful concept for 
the process considered depends on the ex-
tent of the interval over which the process 
appears to be scale-free. A rule of thumb is 
that if the scale-free character persists over 
two orders of magnitude then the fractal 
concept may be useful.

However it is not just spatially that the 
fractal concept has proven to have utility, 
but also for the time interval between events. 
Let us focus on data in Fig. 3, that being the 
time series W(t) of fractional Brownian mo-
tion (fractal time series for short) (Feder 
2013). Here it is not the geometric structure 
that is repeated at successive scales, it is the 
statistics of the fluctuations that are self-simi-
lar. The statistics of the time series are deter-
mined by the probability density P(x,t) and 
the scaling is given by 

Fig. 1. The generation of Koch's snowflake 
fractal. 

Fig. 2. Fractals are a family of shape containing 
infinite levels of detail. 

The tip of each branch continues branching over 
many generations, on smaller and smaller scales, and 
each magnified smaller scale structure is similar to 
the larger form, a property called self-similarity. This 
is a treelike fractal described by fractal geometry. 
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Hurst exponent are based on this scaling 
property.

bution is normal. A number of algorithms 
that are commonly used to calculate the 
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Fig. 3. Self-similarity (or more precisely self-affinity) of fractional Brownian motion. 

The right plot is a blow-up of the rectangular region in the left plot. This region was rescaled by a factor of 
4 along the x axis and by a factor of 2 along the y axis. The traces in both plots appear to “look the same”. 
More precisely, the distribution function of the values for both traces are the same.

SCALING IN PHYSIOLOGICAL TIME SERIES

Fractal fluctuations have been found in 
heartbeat dynamics (Peng et al. 1995), res-
piration (Altemeier et al. 2000, Mutch et al. 
2005), human locomotion (Hausdorff et al. 
1996), posture control (Collins and Luca 
1994) and cerebral hemodynamics (Latka et 
al. 2004). See (West 2013) for a thorough 
review of scaling in physiologic time series. 
They have been the focus of interdisciplinary 
research for more than two decades. One out-
come of this research has been a profound 
change in our understanding of the signifi-
cance of homeostasis. Homeostasis — an or-
ganism’s tendency to maintain, through nega-
tive feedback, approximately constant values 
of vital biological parameters, such as heart 
rate or blood pressure, has been the corner-
stone of modern physiology since the turn of 
the twentieth century. However, the intrinsic 
variability of many physiological phenomena 
seems to reflect the adaptability of the under-
lying control systems and argues against the 
traditional view of homeostasis. 

The view of many scientists is that the 
neurons of the human brain form the most 
complex dynamical network in existence. It 
is therefore hardly surprising that this com-
plexity is reflected in electroencephalograms 
(EEG) — recordings of electrical activity of the 
brain from electrodes mounted on the scalp. 
Like most other biological time series, the EEG 
exhibits stochastic properties. Even when a 

person is quietly resting with eyes closed her 
EEG is irregular. However, an EEG time series 
is not simply uncorrelated noise but contains 
structure, such as alpha, beta, gamma and delta 
wave packets. Consequently, EEG waveforms 
are non-stationary and require special methods 
for their analysis. A number of research groups 
have argued that EEG time series have scal-
ing properties, with a standard deviation that 
increases as a power law in time. The preva-
lent method used to determine the power-law 
index H and to take into account the issue of 
non-stationarity is detrended fluctuation analy-
sis (DFA) (Peng et al. 1994). DFA is intended 
to remove the non-stationary components of 
the time series, called trends, and to provide 
a measure of the standard deviation of the de-
trended fluctuations as a function of the data 
window length. Let us elucidate this algorithm.

All physiological time series such as EEG 
are bounded. The largest amplitudes of EEG 
are observed during sleep. The amplitude of 
delta waves with frequencies between 0.5 
and 2 Hz seldom exceeds 300 μV (Schomer 
and Lopes da Silva 2010) and the amplitudes 
of the other rhythms are significantly smaller. 
To transform the EEG signal into a potentially 
fractal time series we convert bounded meas-
ured values xi into the unbounded process Xt
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DFA is applicable in short-time limit (Ignac-
colo et al. 2010b). To emphasize the impor-
tance of this problem in Fig. 5 we present the 
DFA analysis of EEG segment extracted from 
channel O2 of a polysomnographic recording 
(Ignaccolo et al. 2010a). Some researchers 
suggested that there were not merely two but 
even three scaling regions in EEG signals as in-
dicated in Fig. 5 by straight-line segments. 

Xt is called a cumulative sum or profile. We 
may also say that we constructed a random 
walk Xt using the increments xi for the step 
sizes. Imagine moving along the x axis and xi 
being the length of the i-th step. Thus, Xt is the 
displacement from the starting point to your 
location after t steps. In the above formula x is 
the mean value of the experimental data. Then, 
Xt is divided into time windows of length L 
as illustrated in Fig. 4. For each window a lo-
cal least squares straight-line fit is performed. 
This local trend is removed from the profile 
in each window and the standard deviation of 
the detrended data is calculated. We average 
the standard deviations over all windows of 
length L and plot the average value F(L) as a 
function of L. A linear relationship on a dou-
ble log graph, that is, log F(L) versus log L, in-
dicates the presence of fractal scaling and the 
linear coefficient is the scaling index H.

It is worth emphasizing that DFA is one of 
the most frequently used algorithms for fractal 
analysis of experimental time series. The paper 
that introduced the DFA technique (Peng et 
al. 1994) has been cited over 2000 times as of 
2013. The “DFA” query in PUBMED database 
returned about 500 papers focused exclusively 
on biomedical applications. The initial study 
of heart rate variability using DFA, that being 
to the intermittency of inter-beat interval time 
series, revealed the existence of two distinct 
regimes of scaling with the crossover taking 
place at approximately 10 heart beats (Peng et 
al. 1995). Interestingly enough, the short-time 
scaling exponent turned out to be clinically 
significant. For example, this meassure was 
the most accurate predictor of all-cause mortal-
ity in a cohort of 446 survivors of acute myo-
cardial infarction (Huikuri et al. 2000). The 
“two exponent” approach was used to quan-
tify heart rate variability in various physiologi-
cal conditions (Mäkikallio et al. 1999, Tulppo 
et al. 2001, Beckers et al. 2006, Mourot et 
al. 2007), dynamics of arterial blood pressure 
(Beckers et al. 2009, Castiglioni et al. 2009) 
and cerebral blood flow (Latka et al. 2004). 
Interestingly enough, until recently, no one 
proved in a mathematically rigorous way that 

Fig. 4. The gist of DFA algorithm is to partition 
a cumulative sum of experimental data into 
non-overlapping windows and remove a poly-
nomial trend in each of them. 

The vertical dotted lines indicate windows of size 
L=100, and the solid straight line segments repre-
sent the linear trend estimated in each window by a 
linear least-squares fit.
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Fig. 5. DFA analysis of the EEG segment extrac-
ted from channel O2 of the polysomnogram 
(squares connected with solid line). 

The dotted segments indicate three pseudo-scaling 
regions postulated by some researchers.

PARADOX OF THE ORNSTEIN-UHLENBECK LANGEVIN EQUATION

To address the question concerning the 
applicability of DFA to physiological data, we 
(Ignaccolo et al. 2010b) adopted a simple 
stochastic model which exhibited short-time 
power-law scaling and incorporated a fun-

damental property of physiological control 
systems-negative feedback. This model, is 
known in physics literature as the Ornstein-
Uhlenbeck (OU) Langevin equation (Linden-
berg and West 1990):
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on the length of data segments for both 
type of averaging. It turns out that the long-
time (asymptotic) value for time averaging 
is twice as large as that for ensemble aver-
aging. When we realized the discrepancy it 
was not difficult to understand the reason 
and analytically calculate the values of the 
standard deviation for both ensemble and 
time averaging. 

The question arises as to whether our 
unexpected discovery may be of interest to 
someone other than a statistical physicist. 
The standard deviation is certainly the most 
often used measure of time series variability. 
In light of the difference between ensemble 
and time averaging one can easily envision 
the situation when their simultaneous appli-
cation appears rational but ultimately leads 
to a systematic error. For example, one may 
perform the measurements on a cohort of 
subjects to determine variability of a physio-
logical quantity. However, when the variabil-
ity for a given patient is compared with that 
of a cohort one may be inclined to improve 
the statistics by cutting the time series into 
pieces and performing averaging over them. 
We now know that this may lead to gross 
overestimation of the standard deviation, see 
the curves in Fig. 6.

We must admit as physicists that we feel 
that we benefited the most from this inter-
disciplinary research. We were able to iden-
tify the fundamental property of time series 
analysis using the model which has been 
the integral part of statistical physics since 
its inception. Unfortunately, we understood 
the pitfalls and limitations of application of 
fractal analysis to EEG signals (Ignaccolo et 
al. 2010a). Nevertheless, when a somnologist 

where λ is the dissipation rate and η is a 
random force with ordinary Gaussian dis-
tribution. We already know that in order to 
determine the scaling exponent it is neces-
sary to calculate the standard deviation of 
a signal (with or without detrending) for 
data segments of different lengths. However, 
there are two ways of carrying out the av-
erage. In some experiments and in all com-
puter simulations it is possible to generate 
number of data segments of a chosen length 
and average X(t) and X2(t) over this collec-
tion of realizations of the time series to ob-
tain a standard deviation. This way of doing 
the average is known as ensemble averaging. 
In medicine it is seldom possible. Imagine 
asking a patient to undergo repetitive EEG 
measurements to fulfill your need to average 
standard deviation over, let say 20 trials. It is 
obviously out of the question. 

The second way to do an average is to 
partition the observational data into seg-
ments of increasing lengths, such as in the 
DFA algorithm described earlier, and to aver-
age the time series separately over each of 
the segments. This procedure is known as 
time averaging. But are these two approach-
es equivalent? 

In general whether ensemble and time 
averages are equivalent is a subtle and dif-
ficult question to answer. When the two 
methods yield the same result the system 
is said to be ergodic, otherwise the system 
is non-ergodic. However, every student of 
physics knows that the OU Langevin model 
is stationary and ergodic and consequently 
“... One can then cut the record in pieces of 
length T (where T is long compared to all 
periods occurring in the process), and one 
may consider the different pieces as the dif-
ferent records of an ensemble of observa-
tions. In computing average values one has 
in general to distinguish between an ensem-
ble average and a time average. However, 
for a stationary process these two ways of 
averaging will always give the same result...”. 
This quote comes from the classic paper by 
(Wang and Uhlenbeck 1945). 

 The reader should not be surprised that 
we were convinced that ensemble or time 
averaging should yield the same value for 
the standard deviation for the OU Langevin 
equation. We were wrong. In Fig. 6 we com-
pare the dependence of standard deviation 
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Fig. 6. Standard deviation for the computer si-
mulation of the OU Langevin model for ensem-
ble (squares) and time (circles) averaging. 

Solid and dotted lines are the plots of the corre-
sponding analytical formulas.
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lems but you may learn, as we did, some-
thing totally unexpected.

invites you to a research project do not re-
ject the offer out of hand. You may not only 
help him/her to solve some research prob-

WHAT A PHYSICIST CAN LEARN FROM A SOMNOLOGIST?

Summary

There is controversy concerning the proper frac-
tal scaling of human EEG. In order to resolve it we 
applied the most commonly used algorithm -— de-
trended fluctuation analysis (DFA) to the time series 
generated using a fundamental model of statistical 

CZEGO FIZYCY MOGA NAUCZYĆ SIĘ OD BADACZY SNU?

Streszczenie

physics: the Ornstein-Uhlenbeck Langevin equation 
whose scaling properties can be determined analyti-
cally. In the process we uncovered the totally unex-
pected difference between time and ensemble aver-
aging for this stationary and ergodic model.

Długozasięgowe, fraktalne fluktuacje zaobserwo-
wano w wielu fizjologicznych szeregach czasowych. 
Wyznaczenie fraktalnych współczynników skalowa-
nia sygnałów elektroencefalograficznych (EEG) na-
potkało na trudności związane ze słabym zrozumie-
niem własności jednego z najczęściej stosowanych 
algorytmów statystki fraktalnej — DFA (ang. detren-
ded fluctuation analysis). W celu rozwiązania tego 
problemu przeprowadziliśmy analizę DFA szeregów 
czasowych wygenerowanych za pomocą równania 
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